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Summary

Soil organic carbon (SOC) stocks and their changes are important indicators in ecosystem service assessments.
Routine soil inventories are often limited to the topsoil, even though a non-negligible fraction of SOC is known to
be stored in deeper horizons. To assess SOC stocks and their changes in the upper metre of the soil profile, vertical
extrapolation of topsoil SOC measurements is necessary. The commonly used exponential decline function is
not valid, however, for soil types in which subsurface horizons with a larger SOC content (‘anomalies’) occur.
Here, we propose an exponential change decline function to account for these profile anomalies. Therefore, we
applied the exponential decline function to the difference between the recent (2008–11) and historical (1947–74)
SOC contents in the topsoil and compared the results with those derived by the original method. We applied the
exponential change decline function to 54 041 agricultural land units (7159 km2) in Flanders (Belgium) and were
able to model specific profile characteristics such as spodic horizons, plaggic topsoil and peat substrates. For these
particular land units, the exponential decline function underestimated SOC stocks; therefore, it compromised an
in-depth assessment of changes in SOC stocks over time. This study shows that the exponential change decline
function is promising for certain soil types and will contribute to the more accurate assessment of ecosystem
service indicators. In addition, we emphasize the need for more detailed descriptions of subsoil reference profiles,
sampled by pedogenetic horizon rather than by fixed depth interval to optimize calibration of the decline functions.

Highlights

• When recent soil sampling is limited to the topsoil, extrapolation is needed to assess subsoil SOC stocks.
• We modified the exponential decline function to model SOC-rich subsurface horizons with the integration of

legacy data.
• An appropriate extrapolation approach is essential for in-depth SOC assessments.
• Detailed subsoil data are needed to optimize the calibration of the decline functions.

Introduction

Soil has the largest pool of organic carbon in terrestrial ecosys-

tems (Batjes, 1996); therefore, soil organic carbon (SOC) stocks

and their changes are often considered key indicators in ecosys-

tem service assessments (Layke et al., 2012). The storage and

sequestration of carbon in soil contribute to regulation of the global
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climate (MEA, 2005; Layke et al., 2012) and improve the chem-

ical and physical properties of soil for plant growth and micro-

bial activity, which are closely related to the productive capacity

of soil (Tiessen et al., 1994). Preventing carbon losses and where

possible increasing stocks are especially important to secure the

soil quality of agricultural ecosystems on which we rely for food

security (Powlson et al., 2011). Earlier regional and countrywide

studies in Western Europe, and Belgium in particular, reported a

decrease in SOC stocks in agricultural soil during the last two
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decades. This has been explained mainly as the result of a decrease
in applications of animal manure, increased depth of ploughing and
an increase in temperature through climate change (Sleutel et al.,
2003; Smith et al., 2007; Mestdagh et al., 2009; Taghizadeh-Toosi
et al., 2014).

Most studies focus on the topsoil (i.e. the upper 15–30 cm of
the profile) to estimate regional SOC stocks (Minasny et al., 2013).
However, a considerable (Batjes, 1996; Jobbágy & Jackson, 2000)
and more stable (Rumpel & Kögel-Knabner, 2011) fraction of the
total stock is estimated to be stored in the subsoil and should not
be neglected in ecosystem service assessments. Limiting assess-
ment to the topsoil only is likely to result in an incomplete under-
standing of changes in SOC stocks (Chapman et al., 2013). In most
national monitoring programmes the upper 15–30 cm only of soil
is sampled; therefore, subsoil data are often lacking (Lettens et al.,
2005; Minasny et al., 2013; Gregory et al., 2014). In such cases,
estimates of the vertical distribution of SOC are required to assess
stocks in the upper metre. In general, the SOC content is found
to decrease exponentially with depth (Russell & Moore, 1968).
Therefore, Hilinski (2001) proposed an exponential decline func-
tion, which was applied by Sleutel et al. (2003), Meersmans et al.
(2009) and Hobley & Wilson (2016). Other proposed mathemati-
cal expressions comprise logarithmic (Jobbágy & Jackson, 2000),
power (Bennema, 1974) and spline functions (Webster, 1978). The
popularity of the exponential function is because it can model
changes in the profile with depth for biological and related soil prop-
erties and because of its mathematical simplicity (Minasny et al.,
2013). However, the assumption of exponential decline is not valid
when soil horizons with a large SOC content occur, such as in spodic
horizons, plaggic topsoil and peat substrates (Webster, 1978; Sleutel
et al., 2003). Given their considerable spatial extent, these soil types
cannot be neglected. Podzols are estimated to cover 14% of Europe
(they are the dominant soil of the northern latitudes (European Com-
mission, 2005)) and 12% of Flanders, Belgium (Dondeyne et al.,
2015). Plaggic Anthrosols occupy approximately 500 000 ha and
occur mainly in northwest Germany, the Netherlands and northeast
Belgium (Giani et al., 2014).

In the second half of the 20th century, a large number of soil
profiles were described and their horizons analysed on various key
soil properties in the context of intensive soil sampling campaigns
to produce soil maps in several countries and regions. Such legacy
soil profile descriptions are a valuable resource for extending the
information content of soil maps with quantitative data on historical
SOC stocks (Ottoy et al., 2015). Moreover, these datasets also
contain reference data about the dependence of the SOC content
with depth and can be used to calibrate vertical extrapolation
functions (Sleutel et al., 2003; Mestdagh et al., 2009). In many
of these datasets, profile descriptions are available for the major
soil map units (SMUs) only and so are lacking for the many
minor SMUs. The SMUs are often generalized spatially to achieve
complete cover of the vertical sequence of horizons, their thickness
and SOC content (Lettens et al., 2004). In earlier research we were
able to attach at least one historical profile to 18 731 of 18 809 land
units (defined as a combination of SMU and land cover type) or

98.7% of the non-built-up area in Flanders, Belgium, based on a
multi-level generalization approach from which we derived regional
SOC stocks for the upper 100 cm (Ottoy et al., 2015).

In this paper we propose an approach to compute recent
(2008–11) regional SOC stocks for the upper metre of soil
from topsoil measurements. The approach takes advantage of
historical profile data (1947–74). To account for profile anomalies
related to spodic, plaggen or peat horizons we did not assume that
SOC contents decrease exponentially with depth (i.e. from the
recently measured content in the topsoil to the residual content at
the base of the profile) (Hilinski, 2001). Instead, we applied the
exponential decline function to the difference between the recent
and historical contents in the topsoil and assumed an invariant
SOC content at the base of the profile. We evaluated the approach
by comparing these results with those derived by the original
extrapolation function; first for specific land units under agriculture
and next for the regional aggregation of all agricultural land units
in Flanders. The results are used to assess the changes in SOC
stocks between 1960 and 2010.

Materials and methods

Study area and available data

The SOC stocks were calculated for agricultural soil in the region of
Flanders (north Belgium), which covers an area of 13 522 km2. This
area is characterized by a maritime temperate climate, with a mean
annual temperature of 9.8–10.5 ∘C and a mean annual precipitation
of 733–832 mm (Peel et al., 2007). The soil texture shows a marked
change from north to south with a decrease in sand and an increase
in silt content.

Recent measurements. Between 2008 and 2011, 96 849 soil sam-
ples were taken from agricultural land in Flanders by the Soil
Service of Belgium (Maes et al., 2012). The measurements were
limited to a topsoil of 23 cm for arable land and 6 cm for grassland.
The SOC content (%) was determined by a modified version of the
Walkley & Black (1934) method. Following Lettens et al. (2005), a
factor of 1.14 was applied to calculate total SOC contents. To pro-
tect the privacy of farmers’ field data, the data were made available
as 3-year averages for each possible combination of municipality
(n= 308) and agricultural region (n= 7) for arable land and grass-
land separately.

Legacy data. Together with the soil map of Belgium (cartographic
scale of 1:20 000; OC GIS-Vlaanderen, 2001), an extensive his-
torical soil profile dataset is available for Belgium (Van Orshoven
et al., 1993). The derived Aardewerk-Vlaanderen-2010 database
comprises the location and descriptive data of 7020 soil profiles
and descriptive and analytical data of 42 529 associated horizons,
sampled between 1947 and 1974 in Flanders. The SOC content
was determined by the classic Walkley & Black (1934) method
and a correction factor of 1.32 was applied. With this database,
the Aardewerk-STAT method enabled us to compute statistical soil
profiles using different levels of generalization (Ottoy et al., 2015).
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Figure 1 Schematic overview of the sequential procedures followed in this study. A differentiation is made between inputs, data processing methods and
results.

Statistical soil profiles summarize the data related to a set of match-
ing profiles and associated horizons. In the present study, for each
SMU the most detailed level was selected for which a minimum of
one matching profile was found. For each horizon in the statistical
soil profile, quantitative characteristics were derived, such as SOC
content.

Land cover map. Spatial data for the agricultural fields were
retrieved from the ECOPLAN land cover map with a spatial
resolution of 5 m× 5 m (Vrebos, 2015). The land cover classes were
aggregated into three types: arable land, grassland and other land
cover.

Land units

Land units (LUs) were defined by a topological overlay of
the soil map, the aggregated land cover map, the agricultural
region map and the municipal boundaries. Based on the com-
bination of agricultural region and municipal code, each LU
under arable land and grassland was linked with the average top-
soil SOC content. For each combination of agricultural region,
SMU and land-use type, an historical, statistical soil profile was
retrieved by the Aardewerk-STAT method for the most detailed
level of generalization and linked with the corresponding LU
(Figure 1).

Vertical extrapolation models

Two vertical extrapolation methods were used to model SOC
content below the depth of tillage: (i) the original exponential
decline function of Hilinski (2001) and (ii) the same function
but applied to the change between the recent and historical
SOC contents, further termed the exponential change decline
function.

Exponential decline function (EDF). To model the presence of
the plough layer like Meersmans et al. (2009), the SOC content
was considered to remain constant for the depth of tillage (td),
after which it was assumed to decrease exponentially according to
the general equation of the exponential depth function proposed by
Hilinski (2001):

z ≤ td ∶ C (z) = C0, (1)

z > td ∶ C (z) = Cb +
(
C0 − Cb

)
e−kEDz, (2)

where C(z), Cb and C0 are the SOC contents (g OC g−1 dry
soil) at depth z (cm), the base of the profile and the sur-
face, respectively. In Equation (2), z was considered to be the
mean depth below the plough layer. The value of parameter kED

(cm−1) determines the shape of the exponential decline curve.
A larger kED value corresponds to a stronger decrease in SOC
with depth.

Exponential change decline function (ECDF). By applying the
exponential depth extrapolation function to the change between the
recent and historical contents (ΔC), Equations (1) and (2) were
adapted to Equations (3) and (4), respectively. If we assume that
SOC content at the profile base has not changed (ΔCb = 0), which
accords with Sleutel et al. (2003), Equation (4) can be simplified to
Equation (5). This latter equation can be used to estimate the recent
SOC content at depth z (cm):

z ≤ td ∶ ΔC (z) = C0 − Chist,0, (3)

z > td ∶ ΔC (z) = ΔCb +
(
ΔC0 − ΔCb

)
e−kECDz, (4)

z > td ∶ C (z) = Chist,z +
(
C0 − Chist, 0

)
e−kECDz, (5)

where Chist,z and Chist,0 are the SOC contents (g OC g−1 dry soil)
of the historical soil profile at depth z (cm) and at the surface,
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respectively. Similar to Equation (2), z in Equation (5) represents
the mean depth below the plough layer.

Model calibration and validation

The values of the model parameters Cb, kED and kECD were estimated
using a separate set of 17 profiles sampled in 2012 (Van de Vreken
et al., 2016). In the 17 fields where these profiles were observed,
an historical soil profile was also available. Of these 17 profiles, 10
were under arable land (five in the north-eastern Campine region
and five in the south-eastern Loam belt) and seven under grassland
(four in the Campine region and three in the Loam belt). The
SOC content (%) was determined with an elemental analyser for
fixed depth intervals: 0–30, 30–60 and 60–90 cm for arable land,
and 0–10, 10–20, 20–30, 30–60 and 60–90 cm for grassland.
To model the plough layer, the first interval of the reference data
(0–30 and 0–10 cm) was set according to the boundaries of the
topsoil measurements (0–23 and 0–6 cm). Figure 2 shows that the
SOC content of the second interval was derived by proportional
weighting (according to depth fraction) of the SOC content of the
associated original intervals. Similarly, the corresponding historical
profiles were generalized to the same depth intervals. By pooling
the data points that belong to each combination of agricultural zone
(Campine region or Loam belt) and land use type (arable land or
grassland), the parameters Cb, kED and kECD were estimated with
the nlstools package of R-software (Baty et al., 2015). Each model
was validated by a leave-one-out cross-validation.

As for relations established earlier between the parameter value
and soil texture (Sleutel et al., 2003; Mestdagh et al., 2009), we used
the estimated parameter values of the Campine region for the Dunes
and Sandy region because all three agricultural regions are domi-
nated by soil with a sandy texture. The estimated parameter values
of the Loam belt were used for the three remaining agricultural
regions characterized by finer soil textures (Polders, Sandy loam
region and Pasture area Liège).

The SOC stocks and their change

The SOC content of each horizon i (OCi) for each LU was
obtained by applying Equations (1)–(3) and (5) to the recent
topsoil measurement as the C0 value, the estimated Cb, kED and
kECD parameters and the SOC contents of the horizons in the
corresponding historical, statistical profile as Chist values. Next, the
SOC stock was calculated to a reference depth of 100 cm with
Equation (6). Extrapolation to 100 cm, outside the calibration range
of 90 cm, was necessary to compute changes in SOC stocks over
time. The difference was limited to 10 cm; therefore, we assume it
has a minor effect only on the resulting SOC stocks.

SOC =
n∑

i=1

(
OCi × BDi × di

)
, (6)

where SOC (kg OC m−2) is the SOC stock in the upper metre, n is
the total number of horizons, BDi (kg m−3) is the bulk density of

Figure 2 Overview of the original (a) and adapted (b) depth intervals in
a typical calibration profile under arable land. The resulting profile was
derived by assigning the fitted soil organic carbon (SOC) content of the mean
interval depth to the associated interval.

horizon i and di (m) is the thickness of horizon i. Because there
were no measurements of bulk density, it was estimated by the
pedotransfer function of Rawls (1983):

BD = 100
SOM

BDSOM
+ 100−SOM

BDMF

, (7)

where SOM (%) is the soil organic matter content (SOC content× 2,
analogous to Lettens et al. (2004)), BDSOM is the bulk density of soil
organic matter (0.224× 103 kg m−3) and BDMF is the bulk density
of the mineral fraction, reported by Lettens et al. (2004). The bulk
density of peat soil was set to 0.31× 103 kg m−3 (Batjes, 1996). The
estimated bulk density values probably underestimated the true bulk
density because soil compaction of the upper horizons is widespread
through the frequent use of heavy machinery. Underestimation of
the bulk density leads to an underestimate of the SOC stocks.

The changes in SOC stock were calculated for each LU as the
difference between the resulting recent stock (Equation (6)) and
the historical stocks obtained in Ottoy et al. (2015). This analysis
was carried out for LUs that were under agriculture in both periods.
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Table 1 Estimated parameter values (± standard error) of the exponential decline function (EDF, Equation (2)) and exponential change decline function
(ECDF, Equation (5)) and goodness-of-fit assessment on both the training set (train) and after leave-one-out cross-validation (LOOCV)

Arable land Grassland

Extrapolation function Campine region Loam belt Campine region Loam belt

EDF
kED 0.017± 0.017 0.050± 0.002 0.040± 0.012 0.060± 0.005
Cb 0.000± 1.233 0.183± 0.014 0.347± 0.302 0.536± 0.084
d.f. 8 8 14 10
R2

train 0.77 0.99 0.73 0.97
RMSEtrain 0.31 0.01 0.38 0.13
RMSELOOCV 0.35 0.02 0.43 0.20

ECDF
kECD 0.025± 0.016 0.077± 0.020 0.051± 0.023 0.115± 0.025
d.f. 9 9 15 11
R2

train 0.66 0.56 0.85 0.96
RMSEtrain 0.43 0.11 0.50 0.24
RMSELOOCV 0.41 0.09 0.60 0.34

d.f., degrees of freedom; R2, coefficient of determination; RMSE, root mean squared error.

Because both estimates of SOC stocks rely on estimates of bulk
density by a pedotransfer function that uses SOC content as a
predictor, the resulting changes in carbon stocks need to be treated
with caution (Smith et al., 2007).

Results

Areal cover and calibration

A total of 56 339 land units (LUs) were considered, of which 30 585
LUs (170 959 polygons covering 396 855 ha) represented arable
land and 25 754 LUs (227 077 polygons covering 352 918 ha)
represented grassland. Of these land units, 2298 LUs (33 875 ha)
had been classified as built-up areas and were omitted from further
analysis. The model parameter values were estimated by non-linear
regression (Table 1). The larger was the kED or kECD value, the
greater was the decrease in depth of topsoil SOC or the change
in topsoil SOC, respectively. The Cb value represents the residual
SOC content at the base of the profile, which was larger under grass
than under arable land. For grassland soil in the Campine region, the
exponential change decline function had a larger R2, but also larger
training and cross-validation errors than the exponential decline
function, whereas for the other three combinations the exponential
decline function resulted in a better fit. The standard errors were
larger in the anomaly-rich Campine region than in the Loam belt,
especially for the parameters of the exponential decline function.

Vertical distribution of SOC

Figure 3 illustrates the vertical distribution of SOC for four distinct
LUs. The distribution for a Nudiargic Luvisol in the Loam belt
under arable cultivation (Figure 3a) showed an exponential decline
for both functions, but it was greater when fitted by the exponential
change decline function than by the exponential decline function.
This resulted in larger estimates of SOC stocks for the exponential

decline function (Table 2). Figure 3(b–d) shows the distribution for
three LUs in the Campine region with an ‘irregular’ distribution of
SOC: a Gleyic Podzol under grass, a Plaggic Anthrosol under arable
land and a Gleyic Cambisol (Thaptohistic) under grass, respectively.
The exponential change decline function only was able to fit
LU-specific characteristics such as the spodic horizon (Figure 3b),
the thick plaggic horizons (Figure 3c) and the peat layer (Figure 3d).
This is reflected in the mean SOC stock (Table 2), which is larger
for the estimates based on the exponential change decline function.
Depending on the extrapolation method used, the SOC stock in
the Gleyic Podzol increased with the exponential change decline
function and decreased with the exponential decline function.

Regional SOC stocks and changes

Both extrapolation functions led to differences in total and mean
SOC stocks (Table 3). With the exponential decline function, the
total SOC stock in the upper metre of agricultural soil in Flanders
was estimated to be 102 297 kt OC, 51 070 kt OC under arable
land and 51 227 kt OC under grassland. The estimate of total SOC
stocks was less (81 517 kt OC) with the exponential change decline
function. Mean SOC stocks in the upper metre under grassland
(12.5–15.7 kg OC m−2) were greater than those under arable land
(10.4–13.1 kg OC m−2).

Under arable land, both functions indicated that the largest mean
stocks were in the regions characterized by sandy soil: the Dunes,
Sandy region and the Campine region. Furthermore, these regions
were characterized by the largest difference in estimated mean
stocks. Under grass, the exponential decline function predicted
large mean stocks in the same sandy regions and Polders, whereas
the exponential change decline function identified the Pasture area
Liège as an important SOC pool. The geographical distribution
of SOC stocks estimated by the two functions and corresponding
differences in stocks (Figure 4) showed that the larger estimates
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Figure 3 The modelled vertical distribution of soil organic carbon (SOC) content with the exponential change decline function (black lines) and the exponential
decline function (grey lines), together with the historical SOC profile (grey bars) of four land units (LUs): (a) Nudiargic Luvisol in the Loam belt under arable
land, (b) Gleyic Podzol in the Campine region under grass, (c) Plaggic Anthrosol in the Campine region under arable land and (d) Gleyic Cambisol (Thaptohistic)
in the Campine region under grass.

of stocks made by the exponential decline function were more

widespread, whereas the larger estimates made by the exponential

change decline function were for the scattered ‘anomalous’ LUs.

The 50-year evolution of SOC stocks from a comparison of

the stocks estimated for 2010 with the historical stocks derived

from Ottoy et al. (2015) can be shown spatially (Figure 5). The

western part of Flanders acted mainly as a sink of CO2 during

this 50-year period, whereas the SOC stock in the Campine region

decreased. Because the exponential decline function resulted in

larger estimates of stocks for 2010, the increases were larger and

the decreases were less pronounced. In 1960, the mean SOC stocks

under arable land and grass were 8.3 and 12.8 kg OC m−2, respec-

tively, in the upper metre. Overall, SOC stocks under arable land

increased and the magnitude of increase depended on the vertical

extrapolation function applied: +4.8 kg OC m−2 with the expo-

nential decline function and +2.1 kg OC m−2 with the exponential

change decline function. For grasslands, however, the results

showed an increase of 2.9 kg OC m−2 for the exponential decline

function and a decrease of 0.2 kg OC m−2 for the exponential

change decline function.
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Table 2 Mean soil organic carbon (SOC) stocks (kg OC m−2 in the upper 1 m) derived by applying the exponential change decline (ECDF) and exponential
decline function (EDF), together with the historical SOC stock of four distinct land units (LUs)

Soil map
unit

World Reference
Base classification

Agricultural
region

Administrative
region

Historical
SOC stock / kg OC m−2

SOC stock
ECDF / kg OC m−2

SOC stock
EDF / kg OC m−2

Aba1 Nudiargic Luvisol Loam belt 23 009 6.21 7.83 9.79
Sdg Gleyic Podzol Campine region 11 009 22.70 25.16 18.23
Zam Plaggic Anthrosol Campine region 24 001 25.09 20.48 14.40
vSep Gleyic Cambisol (Thaptohistic) Campine region 13 006 38.34 34.59 14.85

Table 3 Total (kt OC) and mean (kg OC m−2) stocks in the upper 1 m estimated by the exponential change decline function (ECDF) and exponential decline
function (EDF) of arable land and grassland soils aggregated by agricultural zone

Arable land Grassland

EDF ECDF EDF ECDF

Agricultural
region

Area /
ha

Total
stock /
kt OC

Mean
stock /
kg OC m−2

Total
stock /
kt OC

Mean
stock /
kg OC m−2

Area /
ha

Total
stock /
kt OC

Mean
stock /
kg OC m−2

Total
stock /
kt OC

Mean
stock /
kg OC m−2

Dunes 230 44 18.9 32 14.0 1702 353 20.7 238 14.0
Polders 39 436 4448 11.3 4371 11.1 26 223 4451 17.0 3890 14.8
Sandy region 95 011 15 212 16.0 10 821 11.4 100 072 16 510 16.5 11 918 12.1
Sandy loam region 140 919 13 031 9.2 10 501 7.5 94 645 13 448 14.2 9315 9.8
Campine region 69 169 14 203 20.5 11 122 16.1 88 226 14 126 16.0 13 769 15.6
Loam belt 42 750 4003 9.4 3487 8.2 14 243 2013 14.1 1566 11.0
Pasture area Liège 1056 129 12.3 111 10.5 2216 326 14.7 377 17.0
Total 388 572 51 070 13.1 40 445 10.4 327 327 51 227 15.7 41 072 12.5

Discussion

Limitations of recent SOC inventories

Ecosystem service assessments rely on detailed estimates of SOC
stocks and changes in them. Taking the topsoil into account only
would result in an incomplete understanding of the changes in SOC
stocks (Chapman et al., 2013). Because of the limitations of recent
soil inventories (i.e. topsoil measurements that are often spatially
aggregated), vertical extrapolation is necessary (Minasny et al.,
2013). The estimated kED parameters are similar to those found
in earlier studies (Sleutel et al., 2003; Mestdagh et al., 2009); they
show that the larger parameter values are for agricultural regions
characterized by finer soil textures. The estimated values of Cb

reflect the residual SOC stock at the base of the profile, and are
similar to those observed by Meersmans et al. (2009) and Hobley
& Wilson (2016). Hobley & Wilson (2016) stressed the effect
of land use, climate and site factors on the resulting parameter
values. The larger uncertainties in the parameter values from the
exponential decline function in the Campine region probably result
from the anomalous profiles in which the SOC content does not
decline exponentially with depth (Sleutel et al., 2003). Although
the concept of the exponential change decline function was clearly
promising for these particular LUs, the function’s overall predictive
performance was not convincing for our full dataset. We assume
that SOC measurements by depth interval rather than horizon-based

values in our reference dataset partly explain the smaller R2 and
larger root mean squared errors, especially for the arable LUs in
the anomaly-rich Campine region. Depth intervals of 30 cm often
mask the spodic horizon, which can be as narrow as 6 cm in our
legacy database (Figure 3b). To increase the accuracy of estimates
of SOC stocks, we support the recommendations by Wiesmeier
et al. (2012); they proposed that soil should be sampled by horizon
down to the parent material.

The added value of legacy data

Legacy data are, in contrast to recent inventories, often char-
acterized by more vertical detail. Therefore, historical soil pro-
file descriptions provide a valuable source of information on the
assumed invariant sequence of horizons and their historical SOC
contents (Ottoy et al., 2015), and so are essential for model calibra-
tion (Sleutel et al., 2003; Mestdagh et al., 2009). Legacy datasets
are important sources of information, in particular for LUs with an
anomalous distribution of SOC with depth. This ‘irregular’ distribu-
tion cannot be fitted by the exponential decline function and subsoil
data are lacking in recent measurements. Figure 3 shows that the
addition of LU-specific data points (i.e. Chist,z values) led to more
reliable estimates.

The integration of legacy data not only allowed us to obtain
information at depths below the topsoil, but also enabled us to dif-
ferentiate spatially between the LUs. Recent topsoil measurements
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Figure 4 Spatial distribution of the estimated
soil organic carbon stock (kg OC m−2 in the
upper metre) of agricultural soil using (a) the
exponential change decline function and (b) the
exponential decline function. The difference in
stock between (a) and (b) is given in (c).

were aggregated to give average values; therefore, LUs in the same
municipality and agricultural zone were not only assigned the same
Cb value, but also the same C0 value. For the exponential change
decline function, the integration of LU-specific Chist,z and Chist,0 val-
ues enabled a detailed spatial differentiation between different LUs.

Regional SOC stocks

The exponential decline function has been applied by Sleutel et al.
(2003), Mestdagh et al. (2009) and Meersmans et al. (2009), but
our modified function has, to the best of our knowledge, not
been applied before. For stocks under arable cultivation our results
were 10.4–13.1 kg OC m−2 in the upper metre, whereas the mean

estimates of Meersmans et al. (2009) and Sleutel et al. (2003)

were smaller, 8.2 and 7.8 kg OC m−2, respectively. Our estimated

SOC stock under grass by the exponential change decline func-

tion (12.5 kg OC m−2) is within the range of earlier assessments,

11.1 kg OC m−2 by Meersmans et al. (2009) and 14.3 kg OC m−2 by

Mestdagh et al. (2009), whereas the estimate by the exponential

decline function (15.7 kg OC m−2) exceeds these values. The larger

estimates of SOC stocks for arable LUs in the sandy regions can

be explained by the relatively small value for kED of 0.017, which

is smaller than those of Sleutel et al. (2003) and Meersmans et al.

(2009), which were 0.022 and 0.028, respectively. The large esti-

mates for LUs under grass result from the large Cb values. Given the
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Figure 5 Relative changes in the soil organic
carbon (SOC) stock in the upper metre (%)
between 1960 and 2010 for agricultural soil from
the 2010 estimates by (a) the exponential change
decline function and (b) the exponential decline
function.

large uncertainty identified for this parameter, caution is required
when comparing our estimates with those of others.

The estimated stocks of SOC and distributions of the four LUs
studied enabled a more detailed comparison. Even though their
estimated stocks are within the ranges found by earlier studies that
used horizon-based profile descriptions (Wiesmeier et al., 2012;
Gregory et al., 2014), it is clear that the exponential change decline
function only was able to model the specific profile characteristics
adequately. The importance of these LUs in SOC assessments had
already been identified by Springob et al. (2001) in Germany, who
explained larger SOC contents in arable sandy soil by the input of
organic matter through soil development (e.g. podzolization) and
historical land-use practices (plaggen management). In Podzols,
an SOC-rich spodic horizon occurs below the topsoil. Plaggic
Anthrosols are characterized by an SOC-rich plaggen topsoil,
which can have a thickness of more than 100 cm (Giani et al.,
2014). Podzols and Anthrosols cover 12 and 11% of the Flemish
region, respectively; they are situated mainly in the Campine and
other sandy agricultural regions in the northwest (Dondeyne et al.,
2015). At the European level, Podzols are estimated to cover
14% of the area (European Commission, 2005). Anthrosols have
not been mapped consistently; therefore, their estimated spatial

extent of 0.1% is probably underestimated (European Commission,
2005). Under- or over-estimation of the total SOC stock, either
by inconsistent mapping or by incorrect vertical extrapolation,
compromises the in-depth assessment of changes in SOC over time.

The exponential decline function on average predicted larger
stocks than the exponential change decline function, which is
remarkable for the anomaly-rich sandy regions. We assume that
underestimation of these anomalies by the exponential decline
function is offset by larger, probably overestimated, predictions for
the other LUs.

Changes in SOC stocks

The results for particular land units (Table 2 and Figure 3) have
shown clearly the importance of a suitable method of extrapolation
to assess changes in SOC stocks over time. Because the exponential
decline function led to larger estimates of the SOC stock, the
increases were larger, whereas the decreases were less pronounced.
Earlier (topsoil) assessments detected an overall increase in SOC
stocks after 1960, which was explained mainly by changes in
the intensity of manure application and historical land-use (van
Wesemael et al., 2010; Meersmans et al., 2011). Around 1960, soil
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still suffered from a lack of organic amendments during the war and
post-war periods. More intensive manure applications explain the
increases in SOC stocks between 1960 and 2010. However, after
implementation of the law to restrict manure application in 1991
SOC stocks have been decreasing (Sleutel et al., 2003; Lettens et al.,
2005). The larger increase since 1960 in the Sandy region can be
explained by a threefold increase in manure input around 1990 (van
Wesemael et al., 2010). For some LUs, especially poorly drained
grassland soil, the SOC stocks decreased with artificial drainage
after 1960 (van Wesemael et al., 2010; Meersmans et al., 2011).
Although the Campine region stored one of the largest amounts
of SOC in Flanders, this stock has shown the largest decrease
during the past 50 years. van Wesemael et al. (2010) explained
this decrease by the abandonment of plaggen management in the
late 19th century. Our results indicate that this historical land
management practice is an important determinant of the spatial
variation in SOC stock, but its effect is decreasing.

Conclusions

We have shown that the exponential change decline function can
overcome shortcomings of recent soil inventories and can improve
estimates of SOC stocks and changes in these. By including specific
data on the land units, our method resulted in more spatially detailed
estimates than the commonly used exponential decline function.
It was particularly promising for soil types in which SOC-rich
subsurface horizons occur. The function’s overall performance,
however, was not convincing for our full dataset. This is probably a
result of the coarse resolution of the depth intervals in our reference
dataset, which can mask these SOC-rich horizons. Therefore, we
support the recommendations mentioned earlier for future soil
inventories and emphasize the need for more detailed subsoil
reference profiles, sampled by pedogenic horizon. When sampling
by horizon is not feasible practically, the resolution of the depth
intervals should be increased. The availability of such reference
datasets should enable a more detailed calibration and validation
of the models used above.
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